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Design Challenges

Applications at Fermilab

What goes into an integrable lattice design?

What happens when there is chromaticity & momentum spread?

What happens when there is space-charge forces?
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Motivation
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Fermilab Upcoming Upgrades
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“PIP-III” New RCS to replace Booster
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Fermilab Loss Limits

Radio-activation of particle accelerator a major operation limits.

Losses must be kept within absolute limits, which mean power 

increases require a reduction in loss rate.

Shiltsev
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Core-Halo Model
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T. Wangler et al. PRSTAB 1998

http://inspirehep.net/record/482157/files/PhysRevSTAB.1.pdf
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Betatron Tune Spread
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Solutions:

• Increase Injection Energy

• Increase Magnet Aperture

• Lattice Optics

Instead of avoiding resonance 

lines, can be reduce the 

consequences of crossing them.

Laslett Tune-shift
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Lattice
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Integral Design with Periodicity
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QD QFQF QDQD DipDip DipDipQF QF

Standard FODO Cell:

QF QDNL   QD QF



Requirements for DN Integrability:

- Pi-phase advance between nonlinear inserts

- Insertion regions dispersion-free

- Matched beta functions through nonlinear inserts 

Further Criteria related to Nonlinear Integrable Optics:

- Large phase-advance through Nonlinear Insertion

- Matched Horizontal and Vertical Chromaticity

Criteria related to RCS Design:

- Low momentum compaction factor.

- Small maximum beta functions

- High lattice superperiodicity

- Compact circumference

- Insertions for RF, inj/ext., collimation, etc.

- Minimize required magnet strengths
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Lattice Requirements
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Integrable RCS Lattice design
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Periodicity: 12

Circumference: 636 m

Bend-radius rho: 15.4 m

Max Beta x,y function: 25 m

Max Dispersion function: 0.22 m

RF Insertion length: 7.2 m, 4x 1.3m

NL Insertion length: 12.7 m

Insert Phase-Advance: 0.3 x 2π

Minimum c-value: 3 cm

Beta at insert center: 5 m

Betatron Tune: 21.6

Natural Chromaticity: -79

Second-order Chromaticity: 1600

Synchrotron Tune: 0.08

Eldred, Valishev IPAC 2018

NL NL



Preservation of invariants, single-particle motion, phase-errors

Perturbation of nonlinear t, phase-advance μ, phase error Δφ
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Perturbative Approach to Phase-errors
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C. Mitchell, LBL

Perceptible:   ~0.0001

Behaved:       ~0.001

Stable:           ~0.05
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Chromaticity
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Chromaticity
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Barletta

Chromaticity:Change in tune with momentum:
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Chromatic Shifts 

S. Webb: Danilov-Nagaitsev Hamiltonian with chromatic shifts

Chromaticity does not have to be zero;

Motion is integrable if horizontal and vertical chromaticity matched.

δ is adiabatic if synchrotron tune (per nonlinear cell) is small.



Without sextupoles, chromaticity is usually large and negative

But horizontal and vertical chromaticity can still be matched by 

adjusting peaks in beta functions.

Chromaticity is driven by peak betas and betatron tune is driven by 

minimum betas, so in principle they can be fine-tuned separately.

The nonlinear chromaticity be as similar as possible
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Natural Chromaticity Matching
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Chromaticity Matching in simulation

Webb
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Chromaticity Matching in simulation
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Stable Motion, Massive Chromatic Tune-Spread



Sextupoles are the conventional tool for tackling chromaticity:

Sextupoles create an undesirable nonlinear third-order resonance.

Initial experiments combining strong sextupoles with nonlinear 

integrable optics were not successful.

Only weak sextupoles are needed to enforce linear chromaticity 

matching, and no adverse effects observed from this.

Strong sextupoles should be possible with pi-phase interleaving. 
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Can we use Sextupoles? Maybe
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Sextupoles in Phase-space

We can avoid this: …by doing this:

π

kπ

nπ

π
NL   

Two families of sextupoles:
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Space-charge
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Linear Space-charge Forces
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For a KV-beam distribution:

1) All particles have the same H.

2) The 2D projection on the beam is a 

uniform ellipse.

3) Space-charge forces within the 

beam are linear.

4) The entire beam will undergo the 

same tune-shift.
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Space-charge breaks integrability
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With space charge:
• ‘Time independence’ of Danilov & Nagaitsev theory is broken
• Both zero-current invariants now fluctuate significantly at 2 frequencies
• Some ensemble properties still appear to be approximately maintained
• Question: Is that enough?

Singe-particle invariants are broken Ensemble average is better behaved

C. Hall
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Linear Space-charge Compensation
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Rather than use nπ phase-advance between nonlinear inserts, 

anticipate the space-charge defocusing effect:

This means we will need a separate lattice solution for every 

operating intensity. But that’s what we do.

For a non-KV beam distribution, we can still compensate the linear 

part of the space-charge defocusing effect in the core of the beam. 

But in that case, there will be a tune-spread with some phase-error.

More nonlinear cells help with the space-charge tune-spread, the 

critical parameter is the space-charge tune-spread per cell.
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Performance: Halo from Mismatch Distribution
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T. Wangler et al. PRSTAB 1998

http://inspirehep.net/record/482157/files/PhysRevSTAB.1.pdf


Induce a 20% quadrupole mismatch, check for halo.

Can the nonlinear decoherence of the mismatch act to mitigate the 

formation of the beam halo. Trick: Create pre-halo.

Will we encounter any other difficulty from this strong nonlinearity?

1 Conventional Design, Low Intensity Beam (dQ = -0.05)

2 Integrable Design, Low Intensity Beam (dQ = -0.05)

3 Conventional Design, High Intensity Beam (dQ = -0.20)

4 Integrable Design , High Intensity Beam (dQ = -0.20)

Performance: Halo from Mismatch Distribution
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Transverse Beam Halo

1 Conventional, Low Int. 2 Integrable, Low Int.

3 Conventional, High Int. 4 Integrable, High Int.
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RMS Beam Size

1 Conventional, Low Int. 2 Integrable, Low Int.

3 Conventional, High Int. 4 Integrable, High Int.
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Cell Betatron Tune Distribution

1 Conventional, Low Int. 2 Integrable, Low Int.

3 Conventional, High Int. 4 Integrable, High Int.
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Periodicity 6, dQ = 0.2

Mode-locking
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Mode Locking
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Periodicity 12, dQ = 0.4Periodicity 6, dQ = 0.2

Higher Periodicity -> More Nonlinearity -> Higher Charge
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Fermilab Loss Limits

Radio-activation of particle accelerator a major operation limits.

Losses must be kept within absolute limits, which mean power 

increases require a reduction in loss rate.


